The Virtual Object System: An Open Platform
for Internet Multiuser Virtual Reality

Peter Amstutz and T. Reed Hedges
Department of Computer Science
University of Massachusetts, Amherst
Ambherst, Massachusetts 01003
amstutzQcs.umass.edu, reed@zerohour.net

Abstract— Interactive Virtual Reality (VR) on the In-
ternet has been a dream long promised, but despite a
great deal of work few technologies today fulfill this
promise and none are in wide use. Previous efforts
have been unavailable to the public, floundered as aca-
demic prototypes, or focused too much on the graphical
aspects of the problem — ignoring the true challenge
of designing a robust infrastructure on which virtual
environments may be built. This paper considers the
factors that must be taken into account when designing
a multiuser virtual reality system, and then presents
the Virtual Object System (VOS), an open infrastruc-
ture designed to support networks of distributed, col-
laboratively built virtual worlds. VOS is a message-
passing core concerned with the management of “vob-
jects”. Vobjects are network-accessible objects orga-
nized with incoming and outgoing hyperlinks to other
vobjects which form dynamic network-spanning struc-
tures. individual vobjects may be extended on the fly
to support new object types, allowing a single vob-
ject to support several different interfaces. This infras-
tructure has been used to implement the Abstract 3D
Layer (A3DL), a set of object types for describing 3D
scenes. A rendering application realizes these worlds
on the screen, allowing a user to join, move about in
and interact with a world and its contents (including
other users). VOS has been successfully used for sev-
eral nontrivial projects including an immersive inter-
face for monitoring and operating mobile robots at the
University of Massachusetts, Amherst.

I. INTRODUCTION

Few technologies have had so much exposure in the
popular media as the promise of fully interactive mul-
tiuser Virtual Reality (VR) on the Internet. Yet —
despite the pervasive portrayal of three dimensional in-
terfaces in books, movies, and television — such tech-
nology has failed to materialize on the average user’s
desktop with the exception of online games. Why is
this, and what might be an appropriate design for true
shared online spaces? This paper will first discuss
some of the technologies that have been developed to
support online virtual environments but have thus far
failed to take hold, and examine some of the challenges
facing the implementation of online spaces. It will then

Selected "Haghard” (wopi/ zaryaid238 Haghard).
Selected “cone" (uop:i//zaryai4232/cone) .

Haghard> Gaood day to you sir

tetron> and a fine virtual day it is

Haghard> yes, the ether is particularly comfortable today

Fig. 1. A conversation in cyberspace

present the Virtual Object System (VOS)!, our con-
tribution as an open platform for development of mul-
tiuser virtual environments. We discuss the design of
VOS, how VOS is used for implementing VR systems,
and our uses of VOS to support other research.

The use of VOS for VR has many interesting appli-
cations. Perhaps most promising and exciting is the
expansion of online social spaces to a richer medium
of communication, allowing user movement, gestures,
and expressions to improve the interaction experience.
Another fascinating potential is in interactive online
artistic expression. More practically, teleoperation
and telepresence, in which users exert remote con-
trol over robotic systems, would benefit greatly from
a common platform for collaborative VR. Directly ty-
ing incoming data feeds to update three dimensional
models in realtime would have many interesting uses
in shared visualization of complex, changing data. Ul-
timately it is impossible to predict all the potential
applications of a common multiuser platform, but one

I Not to be confused with the “Virtual Operating System”,
an entirely unrelated product offered by Stratus Technologies,
http://www.stratus.com/products/VOS



envisions a scenario much like the World Wide Web
where the creativity of the wider community results
in a vast number of applications never foreseen at the
systems inception. The key to these applications is
in the creation of a living space, where any aspect is
changeable and such changes propagate immediately
to all the users of the space.

Although there are many different ideas about its
meaning, in this paper the following definition for
“Virtual Reality” will be used: Virtual Reality is a
persistent three-dimensional space fundamentally de-
signed to use computer networks for communications
among many users; users are represented by articu-
lated three-dimensional models called avatars and in-
teract with each other in real time for social, entertain-
ment, educational and economic purposes; users are
able to contribute to the world by creating, modify-
ing, deleting or otherwise interacting with any feature
of the world for which they have permission to do so.

II. PREVIOUS WORK

There has been a great deal of work in building
shared virtual reality spaces. Unfortunately, most at-
tempts at building general-purpose VR for the Internet
have been either laboratory prototypes or commercial
endeavors. Prototypes often lack ongoing development
and are eventually discarded due to limited function-
ality or outdated technology. Commercial systems are
closed to outside development and are often driven
more by business considerations than seeking to create
the best possible technology.

The most well known effort is Virtual Reality
Markup Language (VRML) [1] by the Web3D Con-
sortium. The VRML standard consists primarily of
a file format for 3D geometry and specifications for
client-side scripting and events. While it has been suc-
cessful and widely adopted, it solves only one piece of
the VR puzzle. Notably lacking is a standard net-
work protocol to tie the users of a world together to
enable collaboration. While several proprietary mul-
tiuser systems based on VRML exist, notably Contact
[2], DeepMatrix [3] and VNet [4], these systems are
limited and incompatible. Unfortunately the relevant
Web3D working groups for Virtual Reality Transport
Protocol [5] and Living Worlds [6] have had little ac-
tivity since 1999.

Online games are easily the most common form of
online virtual reality experienced today. Games such
as Id Software’s Quake [7] and Sony’s Everquest [8] al-
low for realtime online interaction in three dimensions,
but do not enable the user to contribute to the world in
a unique or substantive way. Some MUD (Multi-User
Dungeon) systems [9] give great freedom to the users
to interact with and add to the world, but these sys-

tems are limited to text-based communication. Most
online games rely on a central server.

The United States Military has developed the Dis-
tributed Interactive Simulation (DIS) [10] system for
simulating military operations. DIS is highly scalable
and has seen extensive use in soldier training and sim-
ulations with hundreds of individual actors. Unfortu-
nately most components are not not available to the
public. The system is also quite specialized and re-
quires a high performance network.

Deva [11] is an architecture for supporting a dis-
tributed virtual environment server so that a single
world may scale to support many users. It provides
object management and migration enabling a world
to be distributed among various servers. It does not
provide services for structurally or categorically orga-
nizing objects, and is based largely on the notion of
centralized world servers.

Distributed Interactive Virtual Environment (DIVE)
[12] is a multiuser system that has been in development
since 1991. DIVE replicates objects and their behav-
iors across every node in the system. When the user
interacts with an object, the changes are sent to ev-
ery other user of the system using a multicast group.
Although the aggressive decentralization frees the sys-
tem from any single point of failure, it also prevents
any client from exercising absolute control over a par-
ticular entity. Additionally, because the system relies
on each client making a decision about entity behavior,
there is significant potential for abuse as well. DIVE
is also not realistic to use in many situations due to its
reliance on multicast, which has not yet been widely
adopted on the Internet at large.

The Columbia Object-oriented Testbed for Ex-
ploratory Research in Interactive Environments (CO-
TERIE) [13] is a system for multiuser virtual envi-
ronments based on a shared memory model using dis-
tributed, replicated data objects and protocols for up-
dating those objects. The system is written in Modula-
3 and Obliq, and supports hierarchical object directo-
ries. This system may be the most similar to VOS
and although very interesting, it has not been made
available to the general public.

I1I. DESIGN ISSUES

There are many challenges to building a system suit-
able for pervasive online VR. These issues include but
are not limited to: performance of 3D rendering, net-
work latency and bandwidth, resource discovery and
organization, single points of failure, security, privacy,
trust, ease of use (by users, content creators and pro-
grammers), extensibility, and the insufficiency of exist-
ing protocols and software in addressing most of these
issues.



It is our opinion that the first challenge, rendering
performance, has become far less of a problem than
it once was. With the proliferation of hardware-based
3D acceleration in standard consumer PCs, beautiful
high resolution 3D graphics can be rendered on nearly
any system bought within the last three years.

Network latency and bandwidth are by far two of
the most difficult issues with multiuser VR. There are
two fairly effective ways of handling latency: the first
is to “push” updates where interested parties are no-
tified immediately when something happens, rather
than having to poll for changes; the second is to move
more processing to the client side and make the net-
work protocol describe action on a higher level. These
measures also help reduce bandwidth usage.

Resource discovery is the problem of knowing what
things (objects, avatars, sounds, etc.) are in a world
and how they relate to one another. For example,
when you load a web page that contains a hyperlink
to a second web page you have not seen before, you
have “discovered” that second web page. Furthermore,
you understand that it is somehow relevant to the web
page you are currently viewing. Without such hyper-
links the World Wide Web would be thoroughly use-
less. Similarly, the elements of a VR space must be
able to interlink with each other such that the whole
is more meaningful than the sum of its parts.

For a VR system to be robust, it must not contain
a single point of failure. The idea of a single massive
server farm running the virtual world is not only bad
design, but quite antithetical to the fundamental prin-
ciples of the Internet, that are based on decentralized
processing. The World Wide Web is again instruc-
tive here: if a single web server goes down, the effects
are isolated to the immediate content hosted on that
server, and the rest of the Internet continues on its
way.

There is also an important philosophical point: the
technical values of the system will influence the social
values of the system. Do we want a dictatorial central
server, or a democratic distributed system? The web
democratically allows anyone with a bit of connectivity
to host his or her own web site, and VR should be the
same way.

Security, privacy and trust are absolutely crucial el-
ements of VR, yet are often overlooked. To prevent
people from snooping in on a conversation, it must
be possible to encrypt communications. This is espe-
cially necessary for transactions such as e-commerce.
Encryption gives users a sense of privacy as personal
information can be protected. By using public key
cryptography and digital signatures, users can verify
the identity of another user — incredibly important in
an environment where it is trivially easy to otherwise

masquerade as another user for sinister purposes.

That VR needs to be easy to use in order to be pop-
ular is self-evident. To users, this means a seamless
experience of moving from world to world engaged in
activities such as talking to other avatars. To content
creators, this means ease of rapidly creating and ar-
ranging the elements of a world in an intuitive fashion.
To programmers, this means ease of understanding the
building blocks of the world, which should follow the
principles of object-oriented design.

Extensibility is possibly the single most important
feature of a VR system. If cyberspace cannot grow to
accommodate changes in technology, what’s the point?
The VR technology will be obsolete even before it
achieves widespread use.

A VR protocol should be object-oriented, dis-
tributed, secure, extensible, and simple. It should inte-
grate with existing infrastructure as much as possible,
and minimize latency by immediately sending updates
to interested parties when the world changes.

It is with these and other design requirements in
mind that we present the Virtual Object System
(VOS), an infrastructure designed to support devel-
opment of open Virtual Reality on the Internet.

IV. TERMINOLOGY

This section briefly describes some terms necessary
for understanding VOS.

The most important term is Virtual Object or vob-
ject (pronounced “vee-object”). Because the term “ob-
ject” is extremely broad in the English language as well
as having a variety of technical meanings, we use the
term “vobject” to unambiguously refer to the abstrac-
tion provided by VOS. Vobjects are formally defined
in the next section, but one important detail to note
is that in object-oriented terms vobjects are instances,
not classes.

Vobjects interconnect to one another with logically
oriented hyperlinks. From the perspective of a partic-
ular vobject, incoming links are termed parents and
outgoing links are termed children.

Publish/subscribe change notification is termed lis-
tening and is an important part of programming for
VOS. This programming technique enables code to
register interest in a particular resource in a sepa-
rate part of the system. When that resource changes
state, all listeners are automatically notified with mes-
sages or function callbacks. This obviates the need to
periodically poll the resource to see if anything has
changed.

A single program will usually create and host a num-
ber of local vobjects. These vobjects must have some
way of communicating over the network and in par-
ticular it is desirable to multiplex the access to these



vobjects over a single socket. This is accomplished by
binding normal vobjects to a special vobject called a
site. A site acts as a bridge between local and remote
vobjects by exchanging VOS messages over the desired
network channel.

V. THE VOS DESIGN

The VOS networking framework supports resource
discovery, decentralization, security and extensibility
in a general way with a particular inclination toward
network VR. The high-level abstraction presented is
that of a distributed, network-transparent, highly in-
terconnected system of virtual objects that, by their
structure and properties, may be used to describe the
contents of a virtual world.

A. Goals

The purpose of the VOS core is to support the fol-
lowing features:
« abstract, object-oriented message passing,
« methods for naming, addressing and interconnecting
vobjects,
« the ability to add listeners to all aspects of vobjects,
¢ a uniform naming system, based on URLs, and
« a polymorphic object typing and extension system

B. The Vobject Model

The basic units of VOS are vobjects, which are for-
mally defined by the following object model:
1. The vobject exists with a unique name as a direct
child of exactly one site.
2. The vobject can be a source and destination for
exchanging messages with other vobjects, with sites
handling intermediate transport as necessary.
3. The vobject has a set of type strings. These may
be used to describe what interfaces this vobject sup-
ports, how to interpret the meaning of child vobjects,
or tag the vobject for other special treatment by an
application.
4. The vobject has an ordered, associative list of out-
bound links to other vobjects. Each link has a posi-
tion and is tagged with an additional contextual name.
This is used by the application to determine how to
interpret the child (linked-to vobject) in the context
of the parent (linked-from vobject). The contextual
name may be used more than once in a given child
list, and may be blank (in which case the link is char-
acterized only by its position).
5. Both sides of a parent-child link are aware of one
another. A vobject may have multiple inbound parent
links.

C. Sites

Sites are a special type of vobject that, in addi-
tion to following the above object model, act as the

connection point between vobjects that are not in the
same address space. Sites encapsulate some network-
ing medium used to transport messages to their des-
tination; this medium could be TCP/IP, ATM virtual
circuits, shared memory backplanes, etc. 2 Each par-
ticipant of the virtual world (clients and servers) must
have a contact point (such as an open TCP port); it
is the resposibility of the site to manage this contact
point. Sites also act as security domains, and the con-
nections between sites may be authenticated and en-
crypted; VOS supports Transport Layer Security (TLS
v1) and Secure Sockets Layer (SSL v3) for this pur-
pose. Using X509 [14] certificates, it is possible to
authenticate the identity of other sites.

As will be discussed below, a vobject may be referred
to through many possible paths, making it difficult to
determine if two given paths actually refer to the same
vobject. Because of this, every vobject is required to
be bound to exactly one site as a direct child with a
unique contextual name. This restriction allows us to
give objects short unique names so that one needs only
the site contact information and vobject’s site name to
address any vobject.

D. Messages

Messages are used to transmit all information be-
tween vobjects. This includes structural information
(maintaining parent-child connections) position up-
dates, describing the appearance of things in the world,
etc. Messages consist of the following information:

The message type,

To and From fields,

A Method field,

A Nonce (unique identifier) field,

A Dependency field,

A Time field, and

After the above header fields there is an ordered,
associative list of parameters. Each parameter has a
key (which may not be blank but may be repeated in
the same message) and a value.

I S

Items 1-6 are headers containing message meta-
information that must be treated specially, item 7 is
the message “payload”, which is split into user-defined
fields.

Messages with the update type are a special sort.
These messages indicate that a requested or listened-
to bit of information has changed. It is desirable to
direct these cache updates to the code handling that
particular remote vobject. As a result, an “update”
message type suggests that the message be delivered to
the local stub (also called a proxy) of the remote object,

2As of this writing (September 2002) VOS only supports
TCP/IP for transport.



that contains the code for handling request replies and
cache updates.

E. Types

The core of the VOS extension mechanism is a sim-
ple and flexible type model for vobjects. Unlike for-
mal class hierarchies found in most object oriented
languages, a type string simply expresses that the
vobject conforms to a certain Object Type Definition
(OTD). An OTD is a document that specifies a vob-
ject’s structure (what meaning should be attached to
child vobjects in particular), what messages it accepts
and emits, and any special or domain specific handling
or interpretation of the object that is expected in im-
plementing applications. A vobject has a set of type
strings, meaning that a single vobject may implement
multiple interfaces or standards. All vobjects support
the basic vobject linking API.

Type strings are almost free form, with only one
important exception. If a type contains one or more
period characters (*.’), it means that the type extends
each type that would be produced if the portion of
the type string following each period were removed
in turn. For example, a vobject with the type “ob-
ject3D.cylinder” inherits all the aspects of “object3D”
specified in the appropriate OTD. Were there to be
another type “object3D.cylinder.foo” it would be ex-
pected to inherit all aspects from “object3D” as well as
“object3D.cylinder”. A corollary from this is that if an
application encounters a type it does not understand
(such as the example “object3D.cylinder.foo”) it may
work its way up the inheritance until it finds a type
that it does understand (perhaps “object3D.cylinder”
in this case).

Allowing a single object to have multiple type defi-
nitions is extremely useful. A common example is the
case of user avatars, where the avatar vobject supports
(at minimum): “a3dl:object3D.model”, “misc:avatar”
and “misc:talkative”. The first type defines a static
geometry model (such as the lego man shown in the
first page) with position in 3D space. The second type
specifies several fields such as nickname, real name,
user information, and presence (such as ready for chat,
occupied, away from keyboard, etc). The third type
specifies that the vobject accepts and emits the “say”
message for text messaging and chatting. It is quite
convenient and intuitive to combine these abilities in
a single vobject, and makes it easy for vobjects to in-
teract even if each side only understands a subset of
the other’s interfaces.

F. Linking and Naming

The parent-child linking system was originally in-
spired by scene graphs, but was later expanded out to

thetree site 1 ownsobjectsaand e

AN VAN

o
— remote -
site 2 owns object ¢ site 3 owns objects b and d

(a) (a)
— local / - — loca @5\

(d) (e) Le)
— remote - — remote -

parent —= child

sitel

IOBO,

®
site2 @\ site3

1@

Fig. 2. A graphical example of how the objects on various
sites might interconnect. Vobjects which are distributed among
several sites can be linked together to form a tree structure.

support general-purpose structures. Vobject links can
form any directed graph, although typically vobject
links are used to group vobjects in “contains” or “de-
scribes” relationships, which form trees or DAGs (Di-
rected Acyclic Graphs). Links can actually be thought
of as data structures in their own right. They list
the parent (source) and child (destination) vobjects,
as well as the contextual name and position in the par-
ent’s child list. Each link in the child list is character-
ized by its position; the name (which may be repeated
or blank and is often meaningful in particular type
contexts) is used to determine the context in which to
interpret the particular child vobject.

Vobjects are addressed using URLs in the format
“vop:/ /hostname[:port]/objname” Consider the fol-
lowing examples, all of which ultimately refer to the
same vobject.?

1. vop://interreality.org/world /ball /position
2. vop://interreality.org/1474612399/position
3. vop://interreality.org/1264095060

Although pointing to the same vobject, each path
may be interpreted differently. The first path shows
the entire scene graph in which the position vobject de-
scribes the position of the ball in the world coordinate
space. The second path points to the ball directly; the

3There is nothing special about the fact that site names are
numeric except that it is easy to generate randomly and guard
against collisions. We are considering changing the implementa-
tion to make these names slightly more useful than long strings
of digits.



position still describes the ball but lacks a coordinate
frame. The third path points directly to the position
vobject with no context at all, it is simply a three di-
mensional vector. It is entirely possible to rediscover
context by asking a vobject for its parents (incoming
links) and processing the graph in reverse order.

Because the basic vobject linking model is standard
across all vobjects, the same tools to access and modify
the vobject structure can be used for a variety of appli-
cations. For example, we have written a command line
shell called mesh which allows one to browse vobject
structures using unix-style commands like “cd” and
“Is” as well as send and receive messages interactively.
This is very useful for inspecting the underlying struc-
ture of a virtual environment and providing a layer of
transparency to the system to programmers and con-
tent creators.

It is this distributed structure that is at the heart
of VOS. Failure is isolated to the immediate vobjects
that are located on the site that has failed. A particu-
lar vobject may be a world root describing the contents
of a space, but should that root become suddenly un-
available, users are still capable of communicating with
one another directly. Indeed, on one occasion during
the testing of this system the world server crashed,
and for several minutes the users logged into the world
continued to move about and talk with each other, un-
aware of what had happened!

G. Listeners

Vobjects essentially consist of three dynamic data
structures: the children list, the parent set, and
the type set. Listeners enable the programmer to
request that a particular vobject send a notifica-
tion update message whenever the state of one of
these lists changes. The notifications are: child
add/replace/remove, parent add/remove and type
add/remove. The concept of listeners is also used for
some object types as well (most notably the “prop-
erty” type). Setting up listeners between sites reduces
latency in the system as the interested parties are sent
update messages immediately when a change occurs.
It also allows for event-driven programming, and many
of the behaviors of a VOS application may be based
on reacting to changes in the vobject structure.

VI. How VOS 1s Usep FOR VR

Layered on top of the VOS infrastructure are the
services and object types used for a virtual environ-
ment.

The Abstract 3D Layer (A3DL, pronounced “ideal”)
is a set of object types for various 3D primitives and
concepts. These include spheres, boxes, cones, cylin-
ders, static 3D models (loaded from external file for-

tetron> and a fine virtual day it is

particularly comfortahle today

P/ Zaryaid237/1714636915).

Selected "1714636915" (vopi//zaruald237/1714636915).

Selacted Object OIX]

1714636915
vop/ zarya 423 T AL

Inhakit Uninhahit |
Gnab This |
Ungxak This |
fittach to This |
Detach £rom This |
3p Propexties |

il Sendl i

Fig. 3. Selecting an object in Ter’Angreal

mats such as .3DS), vertex/polygon geometry directly
specified using vobjects, lights and viewpoints. Most
of these types extend the type “addl:object3D”. This
type specifies that a 3D object has three child vob-
jects, named “position”, “orientation” and “scaling”.
Each of these vobjects is a property supplying rele-
vant information about the logical 3D object. Be-
cause these properties are separate vobjects, it is possi-
ble to seamlessly use a different and remotely located
vobject such as one supplying position from a GPS
unit, or orientation from a head tracker. Extensions
to “a3dl:object3D”, such as “addl:object3D.cube”, in-
clude additional child properties appropriate to that
type (such as coloration or material).

The 3D rendering application that realizes a world
described with A3DL on screen is named Ter’ Angreal®.
This is the main user interface to the virtual world.
This client allows the user to join and move around
the world, to manipulate objects with the mouse and
keyboard commands and to talk to other users. To
simplify implementation, we have made use of the 3D
engine Crystal Space [15]. Using this preexisting code
base has allowed us to focus on the VOS networking
infrastructure and on application-level development.

Network lag is one of the most difficult problems
affecting the user experience of virtual worlds. The
most common manifestation is seeing jerky, inconsis-
tent movement of other users in the virtual world be-
cause it is impossible to send out position updates
anywhere close to the framerate at which the client
is rendering graphics. The usual solution to this is
known as “client side prediction” or “dead reckon-

7 i

ing”. In VOS this is implemented as a generalized

4A Ter’Angreal is a magical artifact from Robert Jordan’s
Wheel of Time saga. Some of the Ter’Angreal most pivotal to
the plot are gateways to other worlds.



Fig. 4. The virtual representation of the arm mirrors, in real
time, the position of the real arm. Figure is from Amstutz,
Fagg:2002 [15].

vector extrapolation along a quadratic curve. When
an object moves, the update which is sent out supplies
the coefficients and initial value for ¢. On the client
side, position is calculated over time ¢ (in seconds) as
<zt +mt+z, yt®+yitt+y, 2t +tat+z>
presenting the user with smooth linear or parabolic
motion of the desired object. In addition, this facil-
ity can be used to extrapolate other vector quantities
including rotation and scaling.

VII. APPLICATIONS OF VOS

Several applications have been implemented using
this system. One such application is a network-
accessible three-dimensional visualization of the state
of a jointed robotic arm. The real robotic arm in
question is part of a torso here at the University of
Massachusetts, Amherst. The torso consists of a pair
of seven-degree-of-freedom jointed arms, each with a
three-fingered hand (the hand itself is fairly complex
and not presently modeled in the visualization). Com-
munication with the arm controllers is accomplished
through a dedicated shared-memory network, giving
real-time information about joint positions (as well
as rotational velocity and other aspects of the state).
Real joint angle information is used to update the po-
sitional state information of the 3D model. This 3D
model represents the actual upper arm, forearm, and
hand in a way that can be easily rendered. This work
was reported in detail in “Real Time Visualization of
Robot State with Mobile Virtual Reality” [16].

VOS was chosen to develop an augmented reality
game. Players are equipped with Xybernaut MA 4
wearable computers, wireless networking (802.11b), a
GPS unit, and a 3-DOF Intersense IS-300 head tracker
[17]. A game server is run on a computer accessible via
the wireless network. Players go out into the field and
place goals by walking around in the real world and
registering the goals based on their GPS coordinates.
Each player is presented with an augmented reality 3D

overlay view used to find the goals set by other playerg
in order to score points. To make the game more inter-
esting, players may also lay down traps which detract
from the score of any players who tread upon the af-
fect area (again based on GPS coordinates). VOS was
used to manage all the objects in this virtual space and
Ter’ Angreal (which did not need to be modified to sup-
port any game-specific features) was used to present
the augmented reality interface.

VOS has been used to build a VR interface to the
Player-Stage distributed robotic control and simula-
tion system [18]. Models representing mobile robots
(both real and simulated) are inserted into the world
and track with the robot’s movements. Operators us-
ing Ter’Angreal can monitor and issue commands to
the robots such as adding goals and waypoints through
typed and spoken commands.

VIII. FUTURE WORK

VOS has come a long way and has many features
for supporting virtual environments. We have plans
for many new features which will greatly enhance the
experience of using the virtual world.

VOS currently lacks any sort of physics simulation.
Physics is usually expressed in virtual environments
through collision detection and gravity. Presently,
users are unconstrained and may move anywhere in
the world. This brings up difficult questions of con-
trol, for in a decentralized system there is the question
of what part(s) of the system may be responsible for
doing the necessary physics simulation. Our tentative
design is to make physics the responsibility of the site
that owns a particular object. A user’s client program
would determine the gravitational acceleration vector
(perhaps based on policies that vary from world to
world); when two objects collide, each object would
calculate its own bounce trajectory independently.

Presently, animating the movement of a model re-
quires breaking it up into individual vobjects, as was
done for the robotic torso. Unfortunately this has a
couple of disadvantages: it greatly increases the num-
ber of vobjects to be downloaded and it is not possible
to “skin” a single texture seamlessly across several in-
dependently movable segments. One possible solution,
widely used in three-dimensional games, is to have a
pre-set list of animation key frames. The user would
then indicate that the model is to assume a partic-
ular posture, or move through a particular sequence,
linearly interpolating vertices between key frames. Al-
though fairly easy, this technique has several signifi-
cant disadvantages. The user is necessarily limited to
set actions, which is often unsatisfying when there is no
available action expressing the user’s intent. This tech-
nique also suffers from the problem that the animation



is entirely independent of the current context and suf-
fers from problems such as “ice skating” where the
strides of a walking model very obviously do not match
up with the movement of the model as a whole. Spe-
cific movements, such as an avatar reaching out and
picking up an item, are nearly impossible. For these
reasons, we intend to investigate forward and inverse
kinematic techniques as a way of allowing arbitrary
motion of articulated figures, and for reducing network
traffic (by sending only a few control points, and doing
the kinematic calculations on the client side).

Finally, an important aspect of virtual worlds is the
aural environment. Ter’Angreal does not presently
support sound. We intend to add support for effect
presets (downloaded ahead of time, which may then
be triggered) and as well as streamed sound for uses
such as background music.

IX. CoNcLUSION AND FINAL NOTES

In this paper we have considered the work so far
and challenges in building multiuser virtual reality sys-
tems. We presented the Virtual Object System, our
design for an infrastructure to support distributed,
peer-to-peer virtual environments. VOS vobjects have
shown to be a valuable framework for creating and
maintaing the dynamic distributed data structures
necessary to describe virtual worlds. We have de-
scribed how this infrastructure addresses some of the
specific challenges of multiuser virtual reality and the
applications it has been successfully put to so far. We
concluded with a discussion of some of our future plans
to build on to this system; VOS continues to be under
active development.

The VOS core library and its applications are writ-
ten in C++ and have been primarily developed in a
Debian GNU/Linux environment with ports to Mac-
intosh OS X and Microsoft Windows. A complete set
of Perl bindings are also available. VOS is free soft-
ware, available under the terms of the GNU Lesser
General Public License [19]. It may be downloaded
from http://interreality.org/software. Additional doc-
umentation is available at http://interreality.org/docs.
A demonstration and live screenshot of the running
test world server through the “virtual web cam” is
available at http://interreality.org/software/vr. The
toplevel VOS project page is http://interreality.org.
We invite interested members of the community to
collaborate with us in our goal to create Internet Re-
ality — Interreality.

X. ACKNOWLEDGMENTS

The work described in this manuscript was sup-
ported in part by NSF #EIA 9703217, DARPA/ITO
#DABT63-99-1-0022 (SDR) and DARPA/ITO

#DABT63-99-1-0004 (MARS). The authors wish t5
thank Andrew Fagg, Brian Levine, Jack Wileden and
Sarah Morrison for their comments and support dur-
ing the development of this work and the writing of
this manuscript.

REFERENCES

[1] ISO/IEC Joint Technical Committee 1 Information
technology Subcommittee 24 Computer graphics, im-
age processing, and The VRML Consortium Inc
(http://www.vrml.org) with the VRML moderated email
list (www—vrml@vrml.org), “The virtual reality modeling
language,” ISO/IEC 14772-1:1997.

[2] Blaxxun Interactive, “Contact,”
http://www.blaxxun.com.
[3] Geometrek, “Deepmatrix,”

http://www.geometrek.com/products/deepmatrix.html.

[4] Jeff Sonstein and Stephen White, “Vnet 1.1b1,”
http://ariadne.iz.net/ jeffs/vnet/.

[5] The VRTP Working Group, “Virtual reality transport pro-
tocol,” http://www.web3d.org/WorkingGroups/vrtp/.

[6] The Living Worlds Working Group, “Living worlds: Mak-
ing vrml 97 applications interpersonal and interoperable,”
http://www.web3d.org/WorkingGroups/living-worlds/.

[7] Id Software, “Quake,” http://www.idsoftware.com.

[8] Sony, “Everquest,” http://www.everquest.com.

[9] P. Curtis and D. A. Nichols, “Muds grow up: Social virtual
reality in the real world,” in In Proceedings of the Third
International Conference on Cyberspace, May 1993.

[10] Naval Postgraduate School, “Distributed interactive simu-
lation standard,” IEEE Standard 1278.1 (series).

[11] Steve Pettifer, Jon Cook, James Marsh, and Adrian West,
“Deva3: Architecture for a large scale virtual reality sys-
tem,” in Proc. ACM Symposium in Virtual Reality Soft-
ware and Technology 2000 (VRST’00), October 2000.

[12] Emmanuel Frécon and Marten Stenius, “Dive: A scal-
able network architecture for distributed virtual environ-
ments,” Distributed Systems Engineering Journal, vol. 5,
1998, Special Issue on Distributed Virtual Environments.

[13] B Maclntyre and S. Feiner, “Language-level support for
exploratory programming of distributed virtual environ-
ments,” in Proceedings of 1996 ACM Symposium on User
Interface Software and Technology, November 6-8 1996, pp.
83-95.

[14] ITU-T Rec. X.509 (REVISED), The Directory Authentica-
tion Framework, International Telecommunications Union,
ISO/IEC 9594-8:1994.

[15] J. Tyberghein, A. Zabolotony, E. Sunshine, T. Hieber,
S. Galbraith, M. Geisse M. Voase an S. Humphreys,
A. Pfaffe, M. Ewert, R. Bate, G Haussmann,
and P. Wyett, “Crystal space manual,” 2002,
http://crystal.sourceforge.net/docs/online/manual/.

[16] Peter Amstutz and Andrew Fagg, “Real time visualization
of robot state with mobile virtual reality,” in Proceedings
of 2002 IEEE International Conference on Robotics and
Automation, 2002, pp. 241-247.

[17] E. Foxlin and M. Harrington, “WearTrack: A self-
referenced head and hand tracker for wearable computers
and portable VR,” in Proceedings of the Fourth Interna-
tional Symposium on Wearable Computers, 2000.

[18] Brian P. Gerkey, Richard T. Vaughan, Kasper Stgy, An-
drew Howard, Gaurav S. Sukhatme, and Maja J Mataric,
“Most valuable player: A robot device server for dis-
tributed control,” in Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS 2001), October 29 - November 3 2001, pp. 1226—
1231.

[19] Free Software Foundation, “Gnu lesser general public li-
cense,” http://www.gnu.org/licenses/gpl.html.



